Sustainable Development in the 21st Century

Editor
Andreas Rechkemmer, Hamad Bin Khalifa University, Doha

Editorial Board
Kevin Collins, The Open University, Milton Keynes
Sven Bernhard Gareis, WWU Münster
Edgar Grande, WZB Berlin Social Science Center
Hartmut Ihne, Hochschule Bonn-Rhein-Sieg
Maria Ivanova, University of Massachusetts Boston
Uwe Schneidewind, Wuppertal Institute
Wilhelm Vossenkuhl, Ludwig Maximilians University of Munich

Volume 3
Jan-Niclas Gesenhues

Smart Energy in Mozambique
Drivers, Barriers and Options
For Annica and Carlotta

https://www.nomos-shop.de/44479
Preface

This thesis was accepted as a dissertation at the University of Münster in the summer semester of 2019. It is particularly dedicated to the analysis of decentralized and intelligently networked energy sectors.

Countries around the world are undergoing a paradigm shift in energy supply – from centralized, fossil-fueled supply systems to a decentralized, intelligently networked and climate-friendly structure. Some countries in the global south play a key role in this development. Using Mozambique as an example, this study shows how a digitally networked energy supply system can grow "from below". On this basis, strategies are developed that can contribute to achieving some of the United Nations' Sustainable Development Goals - especially in the areas of energy, climate, health, economy and poverty reduction.

My special thanks go to my two supervisors Prof. Dr. Norbert Kersting and Prof. em. Dr. Paul Kevenhörster, for their scientific and moral support throughout the research process.

I am also very grateful to Prof. Dr. Boaventura Chongo Cuamba from Eduardo Mondlane University of Maputo for his support, expertise and networks. Our scientific cooperation led into a partnership project between Mozambican and German institutions, funded by the German Ministry of Economic Cooperation and Development. This project addresses the needs of the renewable energy sector in Mozambique and is a great opportunity to use the scientific insights of this thesis in practice.

This work could not have been done without intensive investigations and expert discussions on site in Mozambique. I would, therefore, like to thank all respondents and express my gratitude to the Heinrich Böll Foundation and the German Academic Exchange Service (DAAD) for funding part of my field research in Mozambique and South Africa.

I was privileged to develop my thesis together with an international group of PhD students with a strong expertise in development politics, digitalization and with much experience from East-African countries. I am especially grateful to my colleagues Phillip Hocks M.A., Dr. Andrew Matsiko and Lia Polotzek M.A. for reviewing the manuscript and for very helpful comments and discussions.

Münster, January 2020

Jan-Niclas Gesenhues
Contents

List of acronyms 13
List of symbols 15

1. Introduction 17

2. The Mozambican electricity sector 23
 2.1. Basics of the Mozambican electricity sector 23
 2.2. Generation of electricity 25
 2.3. Transmission and distribution 26

3. Potentials of smart energy for Mozambique’s electricity sector 29

4. Diffusion of an innovation 35
 4.1. Principles of innovation diffusion 36
 4.2. Innovation diffusion among individuals 41
 4.2.1. Knowledge 42
 4.2.2. Persuasion 44
 4.2.3. Decision 45
 4.2.4. Implementation and confirmation 45
 4.3. Innovation diffusion in organizations 45
 4.3.1. Agenda setting 50
 4.3.2. Matching 51
 4.3.3. Decision to adopt 51
 4.3.4. Redefining and restructuring 52
 4.3.5. Clarifying 53
 4.3.6. Routinizing 53
Contents

5. Drivers and barriers to a smart electrification in Mozambique 55

5.1. The empirical study 55
5.1.1. Methodological approach 55
5.1.2. Basics of the research design 56
5.1.3. Potential drivers and barriers 59
5.1.4. Application of the questionnaire 82
5.1.5. Application of the qualitative interviews 85
5.1.6. Data evaluation 87
5.1.7. Methodological challenges 89

5.2. Main findings 90

5.3. Finance 102
5.3.1. Ability to pay 102
5.3.2. Willingness to pay 107

5.4. Electricity market 112
5.4.1. Market power 112
5.4.2. Tariffs and revenues 119
5.4.3. Transaction costs 123
5.4.4. Digitalization 124
5.4.5. Economic environment 127

5.5. Infrastructure 131
5.5.1. Technological parameters 131
5.5.2. Economies of density 132
5.5.3. Costs and benefits of a smart energy sector 135
5.5.4. Grid management 138

5.6. Governance and stakeholders 140
5.6.1. Goals and political performance 140
5.6.2. Political and violent conflict 142
5.6.3. Public institutions 148
5.6.4. Regulatory framework 150
5.6.5. International cooperation and development assistance 152
5.6.6. Acceptance and stakeholders 155

6. Preliminary conclusions and further steps 165

7. Options for a smart electrification 167

7.1. Central track 168
7.2. Decentral track 169
7.2.1. Isolated mini grids 172
Contents

7.2.2. Connected mini grids 174
7.2.3. Off-grid electrification 176
7.3. Central and decentral track – a brief summary 179

8. Assessment of Options 183

8.1. Methodology of the empirical study 184
 8.1.1. Methodological approach 184
 8.1.2. Application of the qualitative interviews 185
 8.1.3. Data evaluation 188
8.2. Central smart grid 189
 8.2.1. Impact of the barriers 189
 8.2.2. Impact of the drivers 194
 8.2.3. Overall feasibility 199
8.3. Isolated smart mini grids 201
 8.3.1. Impact of the barriers 201
 8.3.2. Impact of the drivers 206
 8.3.3. Overall feasibility 212
8.4. Connected smart mini grids 214
 8.4.1. Impact of the barriers 214
 8.4.2. Impact of the drivers 219
 8.4.3. Overall feasibility 221
8.5. Smart off-grid solutions 222
 8.5.1. Impact of the barriers 222
 8.5.2. Impact of the drivers 223
 8.5.3. Overall feasibility 229
8.6. Concluding remarks: Which role for which option? 231

9. Policy recommendations 241

10. Conclusion and outlook 251

References 259

A. Annex 273
List of acronyms

AU African Union
AC Alternating current
ALER Associação Lusófona de Energias Renováveis
AMER Associação Moçambicana de Energias Renováveis
App Application
ARENE Autoridade Reguladora de Energia
CIA Central Intelligence Agency
CNELEC Conselho Nacional de Electricidade
DC Direct current
EDM Electricidade de Moçambique
EnDev Energising Development Program
FDI Foreign direct investment
FUNAE Fundo da Energia, National Energy Fund of Mozambique
FRELIMO Frente de Libertação de Moçambique
GDP Gross domestic product
GIZ Gesellschaft für Internationale Zusammenarbeit
GWh Gigawatt hour
HCB Hydroelectricity of Cahora Bassa
ICT Information and communication technology
IMF International Monetary Fund
INE Instituto Nacional de Estatistica
kV Kilovolt
kWh Kilowatt hour
MPD Ministério de Planificação e Desenvolvimento
MZN New Mozambican Metical
OAU Organization of African Unity
OECD Organization for Economic Co-operation and Development
PayGo Pay-as-you-go technologies
RENAMO Resistência Nacional Moçambicana
RSA Republic of South Africa
SADC South African Development Community
SASGI South African Smart Grid Initiative
UN United Nations
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCTAD</td>
<td>United Nations Conference on Trade and Development</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>ZANLA</td>
<td>Zimbabwe African National Liberation Army</td>
</tr>
</tbody>
</table>
List of symbols

\(C \) Cost function
\(D \) Demand function
\(\varepsilon \) Price-elasticity of demand
\(mc \) Marginal costs
\(mr \) Marginal revenue
\(n \) Sample size
\(p \) Price
\(p_o \) Off-peak-price
\(p_p \) Peak-price
\(\pi \) Profit
\(R \) Revenue
\(sd \) Standard deviation
\(u \) Utility
\(\mu \) Average value
\(x^D \) Demanded quantity of the commodity
\(x_i \) Quantity of the commodity \(i \)
\(x_o \) Off-peak quantity
\(x_p \) Peak quantity
\(x^S \) Supplied quantity of the commodity
\(y \) Number of clients